Sound Insulation and the Code for Sustainable Homes Designing for the Code

Mike Priaulx Senior Environmental Consultant PRP Environmental Services

24th October 2007

PRP Architects Recent Projects:

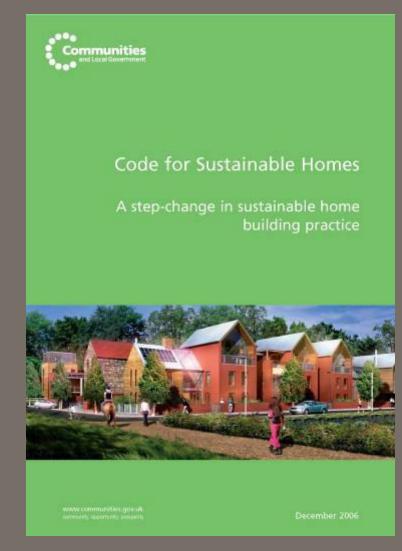
- St Matthews, Brixton low carbon development with Zedfactor
- Crossways Estate sustainable regeneration of residential estate
- Sigma Home demonstration Code Level 5* home at BRE

PRP Environmental Services:

- •Code for Sustainable Homes/ EcoHomes
- •Renewable energy
- •Sustainable architecture
- •Sustainability statements for planning requirements
- •Building Regulations Part L1A
- •BREEAM advice

UK and EU Policy

UK Policy


- Draft Climate Change Bill
 - set staged targets to reach 60% CO2 reduction by 2050
 - 26-32% by 2020 all to be legally binding
- PPS1 addendum Planning and Climate Change
 - 'significant proportion of substantial developments energy LZC solutions'
 - demonstrate how Building Regs to be met at planning stage
- PPS22 Renewable Energy
- Building Regulations Part L1
- ECA scheme, Climate Change Levy, Aggregate tax, Landfill tax

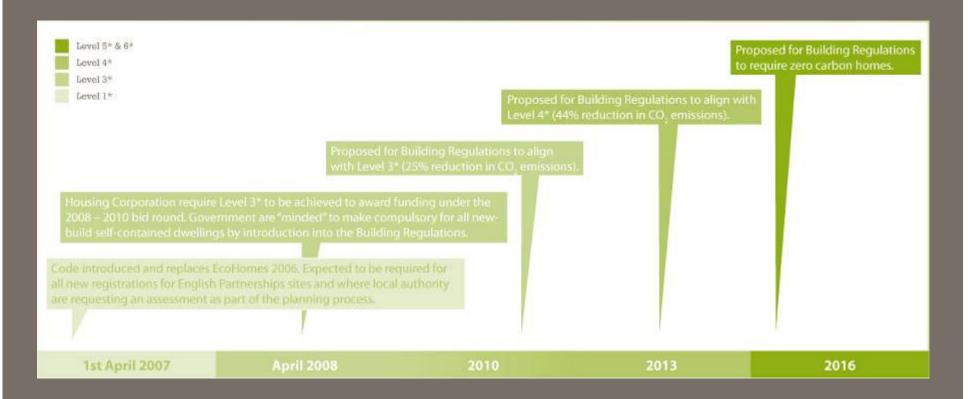
EU Policy

• Energy Performance of Buildings Directive

Code for Sustainable Homes

- Replaces EcoHomes for new-build homes (England)
- Operated by CLG with BRE
- Six levels: 1* to 6*
- Entry level minimum requirements in 5 sections
- Minimum requirements for CO₂ emissions
- Minimum requirements for water efficiency
- Two-stage process
- No location factors transport or amenity

Scoring System



- Assessment is for each *dwelling* rather than for whole development
- Minimum requirements for CO₂ emissions and water efficiency for all levels
- Other minimum requirements have no score associated

Rating	Energy score required (%)	Water score required (%)	Total % required
1*	1.2	1.5	36.00
2*	3.5	1.5	48.00
3*	5.8	4.5	57.00
4*	9.4	4.5	68.00
5*	16.4	7.5	84.00
6*	17.6	7.5	90.00

Introduction strategy

Housing Corporation – Level 3* 2008 – 2010 Bid Round Housing Corporation – proposed Level 4* from 2010 Building Regulations – government "minded" to include mandatory rating (not necessarily assessment) from 2008

- Four credits available (1.16% per credit)
- No Mandatory Elements
- 1 credit: 3dB better than Part E (2003/2004) for impact/ airborne noise
- 3 credits: 5dB better than Part E (2003/2004) for impact/ airborne noise
- 4 credits: 8dB better than Part E (2003/2004) for impact/ airborne noise
- Demonstrated through pre-completion testing OR Robust Details
 - risk associated with testing due to requirement for remediation
- Awarded by default for detached (four credits) or where no separating walls/ floors between habitable rooms (three credits)

• Significant:

- Mat 1 Environmental Impact of Materials (Green Guide)
- Mat 2 Responsible Sourcing of Materials: Basic Building Elements
- Minor impact
 - Pol 1 Global Warming Potential of Insulants
 - Most insulation materials now have GWP of < 5

Green Guide (BRE 2007)

- Not published but draft spreadsheet for Code assessments
- Assessment must be registered to ensure Green Guide rating applies

Mandatory item:

 At least 3 of 5 key elements (roof; external walls; internal walls (partitions and separating walls); ground and upper floors; windows) must be at least 'D' rated

Draft Green Guide rev. D: Separating Walls

 Significant advantage if blockwork can be avoided, e.g.

- where no load-bearing walls required (e.g. concrete frame)
- Steel or timber frame construction
- Aircrete cavity blockwork best option where blockwork is required ('B' rating possible)
- NB Selected constructions only shown

Aircrete blockwork cavity wall, minimum 75mm cavity, 2 sheets staggered plasterboard to both sides.	В
Solid dense blockwork (≈1950 kg/m3) with 2 sheets plasterboard on both sides.	В
Solid medium density blockwork (≈1450 kg/m3) cavity wall (parged), minimum 75mm cavity, 2 sheets of plasterboard to both sides.	D
Non load bearing, precast concrete wall panel with plasterboard and paint	E
Steel jumbo stud partition, plasterboard and skim, glass wool insulation, paint	Α
• • •	A D

Draft Green Guide rev. D: Separating Floors

 Significant advantage if concrete can be avoided, e.g.

- Steel or timber frame construction
- In situ concrete performs badly here

 Chipboard on battens with acoustic leg cradles best option for concrete plank construction ('B' rating possible)

 'Tunnel form' good for energy efficient cooling e.g. Termodeck/ thermal mass, but less appropriate for residential as cooling should be designed out?

С
D
С
В
D
В
A+
E
A+

- In reality, testing needed in many cases for 5dB improvement:
 - performance of 3dB improvement only is demonstrated by lowest end of range of performance for many Robust Details

 Testing also required for most flats, due to combination of separating wall/ floor details to meet Building Regulations Mat 2 Responsible Sourcing of Materials: Basic Building Elements

Advantage to timber frame due to scoring system for materials e.g.

- FSC/ CSA/ SFI/ PEFC timber = 3 points
- MTCC/'Verified'/SGS/ TFT timber = 1.5 points
- EMS for key processes & supply chain = 1.5 points
- EMS for key processes = 1 point

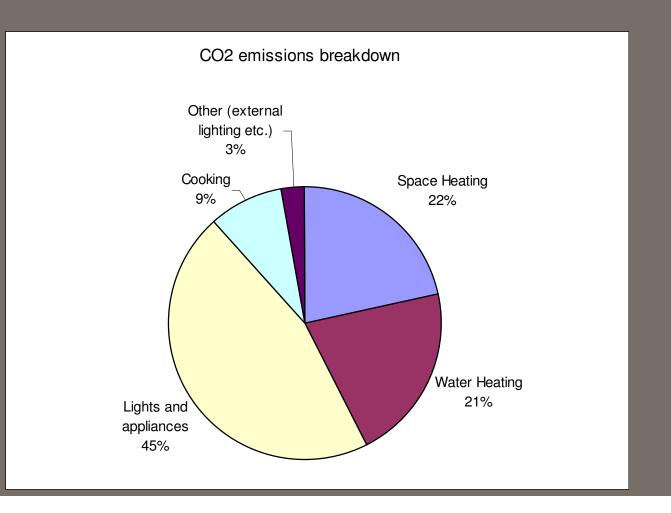
Significantly easier to accumulate points with timber frame. Possible issues with plasterboard – difficult to source with EMS

Ene 1 Carbon Dioxide Minimum requirements

- Level 1* = 10% improvement over TER (B. Regs Target Emission Rate)
- Level 2* = 18% improvement
 - building fabric/ passive solar/ SEDBUK "A" boiler/ controls
- Level 3* = 25% improvement
 - renewables required for most dwellings, e.g. solar thermal, heat pumps, alternatively CHP where appropriate
- Level 4* = 44% improvement
 - renewables required for all dwellings, e.g. biomass, heat pump, PV
- Level 5* = 100% improvement
 - biomass plus PV
- Level 6* = ~150% improvement ("zero carbon")
 - biomass or biomass CHP, plus large area of PV or large-scale wind turbine

- Good U-values (thermal performance) an advantage
- Generally more cost-effective than additional renewables, although not always true at very high levels of insulation
- Standard masonry construction and frame construction allow limited scope for improvement – driver towards widened cavities or SIPS pre-fabricated panel construction
- Pre-fabricated panels offer more scope to reduce air permeability
- Less of a driver for good thermal performance with biomass space/ water heating, although still sustainable choice to reduce energy/ fuel consumption

Notes on Ene 1 Carbon Dioxide part 2



- Accredited Construction Details important to prevent thermal bridges
- Low air permeability significant
- Relationship with Robust Details still to be determined
- Renewables and mechanical ventilation systems could compromise sound insulation if incorrectly detailed or installed
- Code Level 6*: maximum Heat-loss Parameter of 0.8 W/m²K is mandatory: requires amazing U-values and much reduced glazed areas (conflict with passive solar design?)

Energy consumption of typical dwelling – 3-bedroom house

777

- New-build 3-bedroom house 84sqm
- CO₂ emissions 3,100kg/annum
- Designed to meet Part L1a (2006)

Credits and Weighting Summary

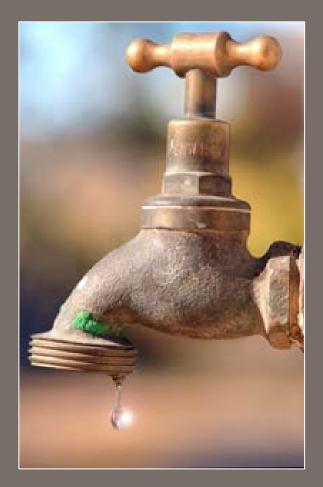
 Category 	No. of Credits in Category	Environmental Weighting Factor
Energy/CO ₂	29	36.4%
 Water 	6	9%
 Materials 	24	7.2%
 Surface Water 	4	2.2%
 Waste 	7	6.4%
 Pollution 	4	2.8%
Health and Wellbeing	12	14%
 Management 	9	10%
 Ecology 	9	12%
 Total 	104 points	100%

Code for Sustainable Homes – Level 3 CO2 emissions 25%

Option 1 Energy efficiency measures only

- Possible specification:
- Lightweight or masonry 200mm insulation
- Roof 350mm insulation
- Ground Floor 85mm insulation
- Windows DG 18mm gap argon fill low-e
- Air permeability rate of 7m³ / hm² @ 50Pa

Option 2 Renewable technologies only


• e.g. 17sqm of photovoltaic

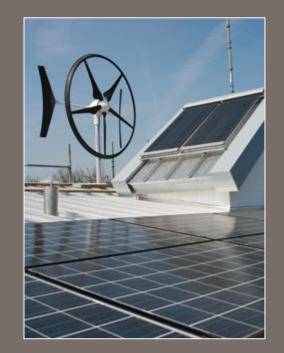
Wat 1 Internal Potable Water Consumption

Mandatory requirement – method flexible based on Code calculation method

Average UK use – 150 litres per person per day

Level 1*/2* – 120 litres per person per day

Level $3^*/4^* - 105$ litres per person per day


- Dual Flush 6/4 litre WC
- Water-efficient taps e.g. 1.7 litres/ minute
- Small bath e.g.150 litre
- 6 litre shower

Level $5^*/6^* - 80$ litres per person per day

- Dual Flush WC
- Water-efficient taps e.g. 1.7 litres/ minute
- Small bath or no bath
- <6 litre shower
- Best-practice white goods where specified
- Rainwater harvesting (houses) OR
- Greywater for WC flush
- Composting toilets?

Stewart Milne Demonstration House – Sigma Home

- First Code Level 5* rating for demonstration project
- Built at BRE for "Offsite" exhibition in June 2007
- Passivhaus U-values (typically 0.15 W/m²K)
- Designed for air permeability of 1 m³/hm²
- Solar thermal hot water
- Wind turbines
- Photo-voltaics
- Greywater reuse ("Ecoplay")

Stewart Milne Demonstration House

- Timber studwork separating wall
- Previous test results confirmed 8dB improvement possible
- No sound testing undertaken as demonstration house
 - door through separating wall due to route for tour of home!

Stewart Milne Demonstration House

Stewart Milne Demonstration House

PRP Architects PRP Environmental Services