

www.aimc4.com

Project Overview

Stewart Dalgarno AIMC4 Project Lead & Director of Product Development Stewart Milne Group

Background: Zero Carbon Policy

- Energy Efficiency
- Carbon Compliance
- Carbon Offsetting

- Forming a R&D consortium
- Common problem to solve
- Securing funding

Technical: Level 4 (44% carbon emissions reduction over 2006 Regs)

Fabric First Solution & Simple Services Solution

Commercial: Level 4 Home, for the cost of Level 3 (Energy)

Best Starting Price, deliverable means to cost engineer, final price point

Market: Desirable Customer Focused Homes

Easy to Use and Run, Efficient and Reliable

Quarte	r 1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5- 1 8
Scoping, research & supply chain development															
Design Development															
Planning															
Construction															
Building performance and Post- Occupancy Evaluation															
Customer Education and Care, post construction POE															
Internal Training															
External promotion															
STRAM Mill	ne C	rest	BARRATT HOMES		Η	ore									

Supplier Sandpits

'I thought the sandpits were a fantastic process despite some initial doubts. Having been through them, I can't see a better way to achieve the objectives'

Selecting Products for in-use Performance

Lean Workshops

- Collaboration between suppliers
- Elimination of waste in all forms
- Starts with design
- Goes through to construction (especially interfaces)
- Series of workshops
 - Timber frame
 - Masonry
 - Windows
 - Services & SIP's

Design Interdependencies

	MEV1	MEV2	MEV3	MEV4	MEV5	MEV6C	MEV7C	DI1	DI2C
Construction	Thin - joint	Thin - joint	Thin - joint	Thin - joint	Closed panel	Closed panel	Thin - joint	Dynamic insulation	Dynamic insulatior
Wall	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16
Roof	0.10	0.10	0.1	0.10	0.10	0.10	0.09	0.10	0.08
Floor	0.12	0.12	0.12	0.12	0.10	0.14	0.13	0.10	0.12
Party Wall	N/A	0	0	0	0	N/A	N/A	N/A	N/A
Door	1.3	1.3	1.3	1.3	0.9	0.9	1.1	0.9	0.9
Windows	DG 1.2	TG 0.8	TG 0.8	DG 1.2	TG 0.8	TG 0.8	TG 0.83	TG 0.8	TG 0.8
French doors	DG 1.15	DG 1.15	DG 1.15	DG 1.15	TG 0.8	TG 0.8	DG 1.3	TG 0.8	TG 0.8
y-values	0.032	0.040	0.045	0.040	0.046	0.032	0.025	0.049	0.034
Airtightness	4	4	4	4	4	4	4	3	3
g-values	0.50	0.39	0.39	0.50	0.41	0.41	0.49	0.41	0.41
WWHR	Yes	Yes							
FGHR	Yes	In built	Yes	In built	Yes	No	No	Yes	No

	MVHR 1&4	MVHR 2&3	MVHR5	IEF1	IEF2	IEF3	
Construction	SIPs	SIPs	Closed Panel	Timber frame	Timber frame	Timber frame	
Wall	0.15	0.15	0.15	0.12	0.12	0.12	
Roof	0.10,0.15	0.10,0.15	0.08	0.07	0.07	0.07	
Floor	0.12	0.11	0.09	0.08	0.08	0.08	
Party Wall	0	0	0	0	0	0	
Door	1.1	1.1	0.9	1.0	0.8	1.0	
Windows	TG 0.83	TG 0.83	TG 0.8	TG 0.8	TG 0.8	TG 0.8	
French Doors	DG 1.3	DG 1.3	TG 0.8	N/A	N/A	N/A	
y-values	0.039	0.045	0.066	0.060	0.070	0.060	
Airtightness	3	3	2	3.5	4	4.4	
g-values	0.49	0.49	0.41	0.41	0.41	0.41	
WWHR	No	No	No	Yes	Yes	Yes	
FGHR	No	Yes	Yes	Yes	Yes	Ves	

Smart Construction and Delivery

- Culture working together
- Collaborative Planning early workshop with trades
- Lean Principles
- CLIP Process measurement : waste in material & Labour

AIMC4 Homes – 17 in total

BRE site analysis – Process Efficiency

Embodied Carbon

Will fabric-first solutions have higher embodied carbon than PV solution?

The AIMC4 homes displayed around 6 % less embodied carbon in comparison with the base case

Timber Frame has **30-45%** less embodied carbon than masonry

The AIMC4 homes displayed 4tCO₂e less embodied carbon in comparison with the base case

To pioneer the low cost, low carbon homes of the future

- £2.98 £4.57 ft² (42% reduction, since start)
- Could come down further
- Speed savings & process improvements NOT considered
- Not skills dependent & simpler solution to build
- Low risk "green in perpetuity" solution
- Zero maintenance, offering lower whole life cost
- Volume delivery should drive further savings
- Supply chain integration opportunity to take out cost

BARRATT

Figure 2: Extra-over cost of the thin joint and open panel timber frame AIMC4 homes per square foot

Costs & Future Considerations

Building Performance - What did we measure?

- Party walls for sound and heat flux
- Airtightness
- Co-heating tests (sample)
- Thermography
- Performance monitoring (16 out of 17)
 - Energy
 - Window opening
 - Relative humidity
 - Carbon Dioxide

Airtightness

Site		Corl	by		Port	tlethan	F	Preston	oans		Presto	า	Epsom							
					cl	osed pane	el timb	er fram	e	Sigm	Sigma OP-4 open			Sigma OP-4 open						
Fabric	t	hin- joint	masonry		Sigma II	Sigma II Dynamic		Sigma II	Sigma II Dynamic	panel timber frame		thin- SIPS joint			ρς					
	Detached	End- terrace	End- terrace	Attached	Detached	Detached dynamic	End terrace	Mid terrace	terrace	End torraco	Mid	End terrace	Detached	End terrace	Mid terrace	terrace	End terrace			
As-designed	4	4	4	4	4	3	4	2	3	4	3.1	4.2	4	3	3	3	3			
Weather-tight					3.1	2.0	3.3	1.9	2.5				3.5	1.4	1.1	1.2	1.2			
First Fix	6.0	4.2	6.2	8.2	3.7	2.5	3.8	2.6	3.6				2.7	2.1	2.5	2.1	2.1			
Second Fix	5.3	5.6	6	6.8									2.6	2.0	1.9	1.8	2.1			
As-built	3.5	3.7	3.3	3.6	4.2	3.8	3.2	2.7	3.2	3.3	3.0	4.1	3.2	1.7	1.9	1.5	2.3			
After 1 year	4.1	4.1	4.6	4.2	3.7	3.2	3.9	3.0	3.3	6.4	4.9	5.6	2.6	2.3	1.7	1.3	1.9			

Party Walls – U-Values

- All party walls displayed heat loss, to varying degrees
- TF party walls performed very well
- Sample was small & with few sensors
- Further research needed
- SAP assumption may not reflect actual

Table 2: Party Walls - As-Built performance, Heat Flux Testing

Site	Party Wall Construction Type	Thermal U-value (W/K/m²)
Corby	Masonry	0.16±26%
Epsom	Standard timber frame	$0.05 \pm 26\%$
Portlethan	Single skin timber frame	0.01 ± 26%

As built testing - thermography

MEV6C: Integral garage ceiling

MVHR3: cold spot along the party-wall & ceiling junction (above stair)

JL6

DI2C: Heat loss around Master bedroom window

MEV7C: Bedroom 4 – cold spots along wall & ceiling junction.

As Built Fabric - Co-heating test results

Design v As Built: Performance Gap Summary

- No homes met there SAP design value
- All but one, generally performed well, against other comparable research
- Performance Gap 3 Key Areas
 - Shortfalls in SAP
 - End of line testing (Co-heating test), is not robust

BARRATT

Milne

> Design & Build practice

In Use Performance - What did we measure?

- Electrical circuits
 - Small Power
 - Fans
 - Lighting
- Space heating & Hot water
- Water & window usage
- WWHR
- Temperature & Relative Humidity
- Air quality

Air Quality

- Co2 good proxy for air quality
- ≥ 1500 : Schools learning threshold
- No issues
- Raised level in one home but not concerning

Figure 5: Carbon Dioxide concentrations³

Internal Temperature

≤<18 ■ 18-25 ■ 25-28 ■ 28-35 ■ >35

Water Heating & Usage

Space Heating

Overall Energy Consumption

In Use: Performance Gap

0

BARRATT

Milne

Crest

- 9/14 Homes (+/-10%) or better than SAP
- Performance Gap 3 Key Areas
 - Shortfalls in SAP assumptions
 - Occupant behavior
 - Design & Build practice

Sustainability as a buying factor

Overall Customer Perception

- All customers were either more satisfied (75%) or neutral (25%) with their AIMC4 home, than their previous home.
- All customers are satisfied or very satisfied with running costs
- Vast majority felt the POE process had been unobtrusive and did not impact on their behaviour
- 14/16 felt they were operating their home efficiently, in reality they may not i.e. opening windows rather than turning down heating controls

Thermal comfort – In General

- 12/16 were satisfied with the internal temperature, during all four seasons
 - Two homes in the SE responded negatively, in summer as they felt too hot, however two identical homes responded neutrally
 - 3/16 felt unable to cool their home in the summer
 - The two DI plots responded negatively , found it difficult to keep home warm, due to localised air movement
 - 13/16 are satisfied overall ventilation in their home
- Temperature is subjective and can be affected by many factors ventilation strategy (e.g. opening windows), individual perception, location etc

Running costs

Conclusions

- Customers are satisfied overall
- They enjoy living there
- Pleased with their running costs
- Low energy features, are not part of, the decision to buy
- Occupant behaviour is the biggest influence, with little scope for developer to influence
- Evidence of a disconnect between what customers think they do/aspire to and their actions
- More needed to understand individual motivations/barriers to reducing energy consumption
- "Fit and forget Fabric first" approach was a success

Information Papers – Free download

