

HBF Technical Conference

14th November 2007

Dominic Miles-Shenton Leeds Metropolitan University

Lessons from Stamford Brook: Achieving air permeability below 3m³/(h.m²) @ 50Pa

Air Permeability

- Basics
 - What is it ?
 - Why is important ?
 - What and where is the air barrier ?
 - What is the target ?
 - How is this to be achieved ?
- Simple questions
 - Need to be asked at every stage of the construction process

Target

- EPS08 (Lowe & Bell, 2001)
 - St Nicholas Court pilot
 - Target 5 m³/(h.m²) @ 50 Pa
- Starting point
 - EST 99 dwellings mean 9.2
 - L2 project Phase 1 mean 12.84 (masonry houses only)

10.63 (masonry houses & flats)

Phase 3 mean 7.88 (masonry houses only)

7.31 (masonry houses & flats)

• Is the target achievable ?

Primary Air Barrier

- Ceiling plasterboard
- Walls parging layer

- Specify location of primary air barrier at design stage
- Ensure primary air barrier is continuous around external envelope (pen-on-section test)
- Minimise penetrations though primary air barrier
- Avoid secondary sealing it is difficult to achieve, costly and generally ineffective

Parging Trial - 2003

Roberts, Johnston, Isle (2005) *A novel approach to achieving airtightness in dry-lined load-bearing masonry dwellings.* Building Services, Engineering, Research & Technology, 26 (1), pp. 63-69.

Resuftentext

Results in context

Results $-3 \text{ m}^3/(\text{h.m}^2)$

- Success achieved, but issues remain:
 - Design
 - Quality Control
 - Workmanship
 - Training
 - Materials/Components
 - Sequencing
 - Communication

Partitioning erected prior to boarding ceilings

Fully boarded ceilings prior to partitioning

Ceiling – wall boundary

Dry lining relies on continuous ribbons of plasterboard adhesive being successfully applied

Continuous Solid

However:

If the primary air barrier is continuous (floor/parging/ceiling) gaps in the perimeter ribbons should not matter

+ 18.9°C

13

Application

Direct connection to internal waste/rainwater pipe

1 - DC1 SuperSleve and PlastiDrain

Alternative detail using internal adaptor retro-fitted in pipe, finished flush with screed (waste pipe only).

Internal Adaptor to waste codes:

- S/S460 S460P
- S/S462 S462P

Secondary Sealing

Airtightness Deterioration

Test Date	Air Permeability (m ³ /(h.m ²) @ 50Pa)	
23 February 2005	2.0	3.3
14 December 2005		4.2
22 March 2006		4.9
07 July 2006	3.1	4.1

Considerations

- GPG 268
 - Below 5 ach @50Pa natural ventilation & intermittent extraction may be insufficient
- Ventilation Strategy
 - MEV ?
 - MVHR ?

Summary

- Some lessons learnt from Stamford Brook:
 - Air permeability < 3 m³/(h.m²) @ 50 Pa is achievable in load-bearing masonry in UK mass housing.
 - To guarantee < 3 m³/(h.m²) the target should be
 < 2 m³/(h.m²).
 - Airtightness issues require consideration at <u>all</u> stages of construction.
 - Measurement (testing) necessary to see trends developing.
 - Feedback essential for improvement
 - Ventilation strategy
 - Airtightness longevity

And Finally...

